In vitro activity of cefiderocol against ESBL-producing and carbapenem-resistant *Pseudomonas aeruginosa*

Rocío Egoávil-Espejo¹, Barbara Ymaña [b]¹, Rosario Oporto-Llerena¹, Dafne Navarro¹, Rosario Huerto-Huánuco¹, Gina Salvador-Luján [b]²,³, Tamin Ortiz-Gómez⁴, Maria Pinedo-Bardales⁵, Luciano A. Palomino-Kobayashi [b]¹, Andrea C. Gómez⁴, Angie K. Castillo¹, Patricia Gonzales⁶, Carmen Valera-Krumdieck⁶, Gabriela Soza⁵, Cristhian Zapata-Cachay⁵, Maribel Riveros⁵,8,9, Maria J. Pons¹ and Joaquim Ruiz [b]¹*

¹Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos—"One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067 Lima, Peru; ²Laboratorio de Microbiología, Hospital Militar Central, Lima, Peru; ³Facultad de Ciencias Biológicas, Universidad Nacional, Mayor de San Marcos, Lima, Peru; ⁴Centro de Investigación Básica y Traslacional, Auna Ideas, Lima, Peru; ⁵Laboratorio de Enfermedades Entéricas y Nutrición, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru; ⁶Servicio de Microbiología, Hospital María Auxiliadora, Lima, Peru; ⁶Servicio de Microbiología, Instituto Nacional Materno Perinatal, Lima, Peru; ⁶Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru; ⁶Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Peru

*Corresponding author. E-mail: jruizb@cientifica.edu.pe; joruiz.trabajo@gmail.com % @Lupakoba, @angiecastillope

Received 10 February 2025; accepted 5 May 2025

Objectives: To determine the activity of cefiderocol against 101 Peruvian Pseudomonas aeruginosa isolates.

Methods: Carbapenem– and/or third- and fourth-generation cephalosporin–resistant *P. aeruginosa* clinical isolates were isolated in nine Peruvian health centres. Antibiotic susceptibility was established by automated methods and/or disc diffusion (10 antimicrobial agents), colistin agar test (colistin) and microdilution (cefiderocol). The presence of *bla*_{PER}, *bla*_{CTX-M}, *bla*_{GES}, *bla*_{KPC}, *bla*_{IMI}, *bla*_{IMP}, *bla*_{NDM}, *bla*_{OXA-23}, *bla*_{OXA-24}, *bla*_{OXA-48}, *bla*_{OXA-58}, *bla*_{VIM} and *oprD* was established by PCR; *bla*_{CTX-M} and *oprD* were sequenced. The levels of antimicrobial resistance ranged from 20.8% (colistin) to 97.0% (meropenem).

Results: The MIC of cefiderocol ranged from ≤0.06 to 8 mg/L (one isolate). Cefiderocol resistance rates were 1.0% (according to the FDA and EUCAST) and 0% according to CLSI, whereas 14.9% and 1.0% of isolates were classified as cefiderocol-intermediate according to FDA and CLSI, respectively. CTX-M-131 and GES, and IMP and VIM were the most frequent ESBLs and carbapenemases, respectively. The presence of *oprD* mutations was tested in 47 carbapenem-resistant isolates, 23 with *oprD*-inactivating mutations as the sole underlying mechanism. Although no specific association was found between the presence of ESBLs and carbapenemases with cefiderocol resistance, carbapenemase-producing isolates tended to present slightly higher cefiderocol MIC values. The cefiderocol-resistant isolate did not present ESBLs or carbapenemases, showing only an *oprD*-inactivating mutation.

Conclusions: Cefiderocol showed excellent activity against *P. aeruginosa*, irrespective of the presence of ESBLs and/or carbapenemases. The high number of isolates bordering cefiderocol-resistant levels suggests the need for cautious use and continuous surveillance of this antibiotic.

Introduction

The high levels of use, abuse and misuse of antibacterial agents have had a high impact on antibiotic-susceptible

bacterial populations and the selection and/or development of antibiotic-resistant microorganisms, which have expanded throughout all environments and geographical areas. ¹⁻³ In fact, antibiotic resistance is challenging current clinical practices,

© The Author(s) 2025. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NewCommons.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

severely impacting the treatment of infectious diseases and also hindering interventions, such as organ transplantation, ⁴ thereby threatening to return the treatment and prevention of infectious diseases to the pre-antibiotic era.

This problem has a worldwide dimension. Notwithstanding its planetary effect, the problem of antibiotic resistance is of special concern in low- and middle-income countries.³ This finding is related to a series of sociocultural and economic factors, including over-the-counter access to antibacterials and the difficulty in accessing or the precarity of health facilities.^{5,6} The magnitude of the current problem has led the WHO to consider antimicrobial resistance amongst the most critical current health challenges (https://www.who.int/news-room/photo-story/detail/urgent-health-challenges-for-the-next-decade), being considered a real risk for achieving Sustainable Development Goals.⁷

In this scenario, the development of new antibacterial agents is urgently needed. In recent years, several antibiotics have been developed and some have been introduced into the clinical practice. Among these, cefiderocol is a new cephalosporin that is recognized by bacteria as a siderophore. Thus, in addition to classical pathways of cephalosporin intake, this antibacterial agent uses a bacterial backdoor—the bacterial ion-acquisition systems—to cross bacterial barriers, acting as a true Trojan horse. This results in optimal activity levels against a series of pathogenic bacteria, otherwise resistant to other antimicrobial agents, including other third- and fourthgeneration cephalosporins. Hence, cefiderocol is active against a series of Gram-negative microorganisms of special concern, including carbapenem-resistant *Pseudomonas aeruginosa*.

P. aeruginosa is a ubiquitous microorganism, which can be recovered from a great variety of environments and sources. ^{2,15} This microorganism may act as an opportunistic pathogen, being a frequent cause of infections in ICUs, ² in which the presence of *P. aeruginosa* resistant to specific antibacterial agents, such as carbapenems, has a direct impact on fatal outcomes. ¹⁶

Peru is a middle-income country in which the current levels of antimicrobial resistance are worrisome. ^{17–19} Regarding *P. aeruginosa*, different reports have shown high levels of resistance to carbapenems and antipseudomonal cephalosporins. ^{2,20} In Peru, the aforementioned levels of carbapenem resistance are mostly related to OprD alterations, ²¹ with descriptions of several carbapenemases, such as those belonging to IMP or VIM families, as well as the GES family, which may act as ESBLs or carbapenemases. ^{22–24}

In this scenario, the present study aimed to evaluate the activity of cefiderocol against carbapenem-resistant and/or ceftazidime/cefepime-resistant clinical isolates of *P. aeruginosa* collected in different Peruvian healthcare centres.

Materials and methods

Microorganisms

A total of 101 carbapenem– and/or ceftazidime/cefepime–non-susceptible clinical isolates of *P. aeruginosa* were included in the study. The isolates were collected between 2016 and 2022 in nine different Peruvian hospitals from four Peruvian regions (Table 1), and identified through automated methods (VITEK-2; bioMérieux, Marcy l'Etoile, France).

Antimicrobial susceptibility

Antimicrobial susceptibility, except for that of colistin and cefiderocol, was established through automated methods (VITEK-2) and disc

diffusion in agar.²⁵ The MIC of colistin was established in accordance with CLSI procedures.²⁵ Regarding cefiderocol, the MIC was established by microdilution in 96-well plates using iron-depleted media (RUO Iron-depleted broth, Remel, Lenexa, USA), in agreement with previously described procedures. ^{25,26} Briefly, as a first approach, the concentrations of cefiderocol in the ELISA plates ranged from 0.06 to 2 mg/L. An extended MIC (2 to >64 mg/L) was performed in all isolates growing in wells containing 2 mg/L of cefiderocol. In all cases, a positive (tested bacteria grown in media without cefiderocol) and blank (non-inoculated media) were used as controls. Thin growth is not considered when the MIC of cefiderocol is determined;^{25–27} thus, to avoid subjective eye-read differences in the interpretation of data, 28 all plates were read in an ELISA reader (SYNERGY LX; Biotek, Santa Clara, CA, USA) at a wavelength of 600 nm, with bacterial growth being considered when the OD was >0.100, approximately 2.5 times higher than that of blank (noninoculated culture media) absorbance values.²⁶ Isolates bordering the established OD breakpoint (i.e. 0.09 ≤ OD ≤ 0.110) were classified as dubious and MIC testing was repeated.²⁶

In all cases, results were interpreted following the CLSI guidelines. ²⁵ In addition, cefiderocol resistance levels were also determined according to the EUCAST and FDA guidelines. ^{29,30} In addition to a series of randomly selected isolates in which the cefiderocol MIC was performed twice as a quality control, the cefiderocol MIC of all isolates qualifying as resistant for any of the above-mentioned guidelines was performed up to three times, for confirmation and validation. A discrepancy of one dilution was considered inherent to the methodology, and the MIC that was common in at least two assays was reported. *Escherichia coli* ATCC 25922 was used as the quality control in all assays.

ESBLs

In all isolates, the presence of $bla_{\rm PER}$, $bla_{\rm GES}$ and $bla_{\rm CTX-M}$ was established by PCR as described elsewhere (Table 2). 19,31 Additionally, when $bla_{\rm CTX-M}$ was present, the group (i.e.: 1, 2, 8, 9) was established by PCR (Table 2). 19 Amplified products were gel recovered (E.Z.N.A. Gel Extraction Kit; Omega Bio Tek, Norcross, GA, USA) and sequenced (Macrogen, Seoul, South Korea) to determine the exact $bla_{\rm CTX-M}$ gene variant.

Carbapenemases

The presence of $bla_{\rm KPC}$, $bla_{\rm IMI}$, $bla_{\rm IMP}$, $bla_{\rm NDM}$, $bla_{\rm OXA-23}$ -like, $bla_{\rm OXA-24}$ -like, $bla_{\rm OXA-58}$ -like and $bla_{\rm VIM}$ was determined by PCR as previously described (Table 2). $^{31-33}$

oprD gene

The presence of *oprD* gene alterations was sought in 47 isolates showing resistance or intermediate profiles to at least one carbapenem. The *oprD* gene was amplified using the following conditions: $5 \, \text{min} \times 95^{\circ}\text{C}$, $30 \times (1 \, \text{min} \times 95^{\circ}\text{C}$, $1 \, \text{min} \times 60^{\circ}\text{C}$, $1 \, \text{min} \times 72^{\circ}\text{C}$), $7 \, \text{min} \times 72^{\circ}\text{C}$. Amplified products were resolved in a 1.5% agarose gel stained with 5% Sybr Safe, and gel recovered and sequenced as above (Table 2).

Ethical issues

The study was approved by the Institutional Review Board of Universidad Cientifica del Sur (code: 066-2020-PRO99).

Results

In addition to third- and fourth-generation cephalosporins and carbapenems; for which values of non-susceptibility of up to 98% were determined for meropenem in agreement with the inclusion criteria; the isolates included in the study showed high

JAR

Table 1. Pseudomonas aeruginosa clinical isolates included in the study

No. of isolates	Centre	Region	Area	Year
3	A ^a	El Callao ^b	Metropolitan Lima	2021
15	B^{a}	Lima	Metropolitan Lima	2021 (11), 2022 (4)
3	Ca	Lima	Metropolitan Lima	2021
4	D^{a}	Lima	Metropolitan Lima	2021
53	Е	Lima	Metropolitan Lima	2016 (52), 2022 (1)
11	F	Lima	Metropolitan Lima	2021
2	G	Lima	Metropolitan Lima	2021
2	$H^{\mathtt{a}}$	Arequipa	Southern Peru	2021
4	I^{α}	Piura	Northern Peru	2021
4	ND	ND	ND	2021

ND, not determined (no data about the exact geographical origin were available).

Table 2. Primers used in the study

	Primer se				
Gene	Forward (5' \rightarrow 3')	Reverse (5' \rightarrow 3')	Size, bp	Annealing temperature, °C	Reference
bla _{CTX-M} -like	CGATGTGCAGTACCAGTAA	TTAGTGACCAGAATCAGCGG	585	60	19
bla _{CTX-M-G1} -like	GTTACAATGTGTGAGAAGCAG	CCGTTTCCGCTATTACAA	1041	50	19
bla _{CTX-M-G2} -like	ATGATGACTCAGAGCATTCG	TCAGAAACCGTGGGTTAC	877	52	19
bla _{CTX-M-G8} -like	TGATGAGACATCGCGTTAAG	TAACCGTCGGTGACGATTTT	875	52	19
bla _{CTX-M-G9} -like	TGACCGTATTGGGAGTTTCAG	GATTTATTCAACAAAACCAG	917	55	19
bla _{GES}	CTGGCAGGGATCGCTCACTC	TTCCGATCAGCCACCTCTCA	600	57	31
bla _{PER}	AGTGTGGGGGCCTGACGAT	GCAACCTGCGCAATRATAGCTT	725	57	31
bla _{KPC}	TCGCCGTCTAGTTCTGCTGTCTTG	ACAGCTCCGCCACCGTCAT	353	57	31
bla _{NDM}	ACTTGGCCTTGCTGTCCTT	CATTAGCCGCTGCATTGAT	603	57	31
bla _{IMI}	CTACGCTTTAGACACTGGC	AGGTTTCCTTTTCACGCTCA	482	57	33
bla_{VIM}	TGTCCGTGATGGTGATGAGT	ATTCAGCCAGATCGGCATC	437	57	31
bla_{IMP}	ACAYGGYTTRGTDGTKCTTG	GGTTTAAYAAARCAACCACC	387	57	31
bla _{OXA-48} -like	ATGCGTGTATTAGCCTTATCG	CATCCTTAACCACGCCCAAATC	265	57	31
bla _{OXA-23} -like	TACAAGGGATTCGGCATCG	TAATGGCCTGTTCCCATGTG	570	52	32
bla _{OXA-24} -like	AAAATCTGGGTACGCAAACG	ACATTATCCGCTGGAACAGG	271	52	32
bla _{OXA-58} -like	TCGACACACCTTGGTCTGAA	AACTTCCAACTTTGCCATGC	477	52	32
oprD	GGCAGAGATAATTTCAAAACCAA	GTTGCCTGTCGGTCGATTAC	1384	60	21

levels of antimicrobial resistance to other antipseudomonal antibacterial agents, ranging from 38.6% for piperacillin/tazobactam to 82.2% for cefepime. Additionally, a large number of isolates were classified as intermediate for different antimicrobial agents, such as piperacillin/tazobactam, with 34.7% of intermediate isolates (Table 3). Of note, resistance to colistin was 20.8% (MIC ranged from 4 to 8 mg/L), with most of the colistin-resistant isolates (14 of 21, 67%) being recovered in the same centre (Hospital E) (Tables 1 and 3). Disregarding cefiderocol, 30 isolates showed non-susceptibility to all the antimicrobial agents tested (the 'susceptible' category was not considered for colistin, which only qualifies as intermediate or resistant), including 9 isolates fully resistant to colistin, and thereby potentially pan-resistant. Of these 30 isolates, 5 presented a MIC of cefiderocol of 2 mg/L

(intermediate according to the FDA, but susceptible according to the CLSI and EUCAST), and 1 had a MIC of 8 mg/L (4, 8 mg/L and 8 mg/L in the three replicate MIC assays), thereby qualifying as intermediate according to the CLSI and resistant according to the remaining criteria considered.

Regarding cefiderocol, the range of MICs varied from \leq 0.06 to 8 mg/L (MIC \leq 0.06, 4 isolates; MIC = 0.125, 6 isolates; MIC = 0.25, 20 isolates; MIC = 0.5, 33 isolates; MIC = 1, 22 isolates; MIC = 2, 15 isolates, MIC = 8, 1 isolate) with MIC $_{50}$ and MIC $_{90}$ of 0.5 mg/L and 2 mg/L, respectively. Only one isolate from a Lima health centre presented a MIC > 2 mg/L (MIC = 8 mg/L), which was categorized as intermediate by CLSI and resistant by EUCAST and FDA (Table 3). As mentioned above, this isolate was resistant to all the remaining antimicrobial agents tested, except colistin, which

^aHealth centres belonging to the same clinical consortium.

^bEl Callao is a special administrative region in Peru, but is physically located within Metropolitan Lima.

Table 3. Antibiotic susceptibility of the 101 *Pseudomonas aeruginosa* isolates

Antibiotic	S [n (%)]	I [n (%)]	R [n (%)]
ATM	13 (12.9)	21 (20.8)	67 (66.3)
CAZ	24 (23.8)	17 (16.8)	60 (59.4)
FEP	11 (10.9)	2 (1.9)	83 (82.2)
TZP	27 (26.7)	35 (34.7)	39 (38.6)
CZAª	50 (49.5)	_	51 (50.5)
IPM	2 (2.0)	2 (2.0)	97 (96.0)
MEM	2 (2.0)	1(1.0)	98 (97.0)
CIP	16 (15.8)	8 (7.9)	77 (72.6)
GEN	32 (31.7)	1(1.0)	68 (67.3)
AMK	49 (48.5)	5 (4.9)	47 (46.5)
CST ^a	_	80 (79.2)	21 (20.8)
FDC (FDA)	85 (84.2)	15 (14.9)	1 (1.0)
FDC (CLSI)	100 (99.0)	1 (1.0)	0 (0.0)
FDC (EUCAST)	100 (99.0)	0 (0.0)	1 (1.0)

AMK, amikacin; ATM, aztreonam; CAZ, ceftazidime; CIP, ciprofloxacin; CST, colistin; CZA, ceftazidime/avibactam; FDC, cefiderocol; FEP, cefepime; GEN, gentamicin; I, intermediate; IPM, imipenem; MEM, meropenem; R, resistant; S, susceptible; TZP, piperacillin/tazobactam.

 ${}^{\alpha}\text{The dashes}$ in CZA and CSP represents not established values for these categories.

was categorized as intermediate (MIC \leq 0.5 mg/L). Finally, the most conservative breakpoint (that of FDA) also identified 15 *P. aeruginosa* isolates as intermediate (Table 3). Regarding *E. coli* ATCC 25922, its cefiderocol MIC ranged from 0.125 mg/L to 0.25 mg/L in the assays developed, within the considered valid interval as per CLSI rules. ²⁴ Regarding colistin-resistant isolates, the MIC of cefiderocol ranged from \leq 0.06 mg/L (one isolate) to 2 mg/L (one isolate), with 0.5 mg/L being the most common MIC (nine isolates).

The search for ESBLs showed that 23 isolates presented $bla_{\text{CTX-M-}131}$ and 1 presented $bla_{\text{CTX-M-}2}$. Additionally, 15 isolates were positive for universal CTX-M primers but no specific group was detected. It is noteworthy that all the $bla_{\text{CTX-M-}131}$ -producing isolates were recovered from the same centre in Lima City (Hospital E). The presence of bla_{GES} was detected in 13 isolates. No bla_{PFR} was detected. (Table 4).

Most isolates (38 of 47) presented inactivating alterations in the OprD protein, either internal STOPs or base insertions/deletions leading to frameshift mutations (Table 4). Two of nine isolates with non-inactivating alterations showed a 50 amino acid deletion, whereas another presented an inserted proline at amino acid position 70; the remaining isolates presented a series of punctual amino acid substitutions when compared with the OprD of *P. aeruginosa* PAO1. Seven of nine isolates with noninactivating OprD alterations possessed $bla_{\rm GES}$ (seven isolates), concomitantly with a $bla_{\rm IMP}$ in one case, and $bla_{\rm NDM}$ (one isolate). Thus, in these isolates carbapenem resistance remained unexplained in only one case. However, 23 of 38 (60.5%) isolates with inactivating alterations at OprD did not present any of the carbapenemases or $bla_{\rm GES}$ sought.

The most common carbapenemase genes were blavim and bla_{IMP}, accounting for 9 and 20 positive isolates, respectively. Meanwhile, one isolate possessed bla_{NDM}. Of note, in several cases, more than one carbapenemase was detected concomitantly in the same isolate (Table 4). No association between the presence of ESBLs, carbapenemases, OprD alterations or a combination of the above was correlated with the development of resistance to cefiderocol; the isolate showing a MIC of 8 mg/L did not possess any carbapenamase or ESBL and presented the alteration Y₄₉* in OprD. The same OprD alteration was detected in four other isolates, with the MIC of cefiderocol ranging from 0.5 mg/L to 2 mg/L. Nevertheless, the presence of carbapenemases correlated with a trend for higher levels of resistance, with the range of cefiderocol MICs being ≤0.06 to 2 mg/L when only ESBLs were detected, and being 0.25 mg/L to 2 mg/L when carbapenemase(s) were present (Table 4, Figure 1).

Discussion

P. aeruginosa is an opportunistic pathogen frequently isolated in sensitive environments, such as ICUs or burns units.^{2,23} In addition to low-permeability and potent efflux pumps, this microorganism has a great facility to become resistant to antimicrobial agents by acquisition of exogenous genetic material or because of the development of chromosomal mutations.^{34,35} This finding has led to the common isolation of multi-resistant *P. aeruginosa*, showing the need for new therapeutic alternatives.³⁴ Although this is a worldwide trend, the situation in low- and middle-income countries is dire, due to the presence of several other limitations, such as economic barriers, poor access to health facilities, or lack of adequately trained personnel, which, combined with an easy over-the-counter access to antimicrobial agents and a deficient healthcare-related culture, results in worrisome levels of antimicrobial resistance to most of the antimicrobial agents available.^{5,6}

Among others, cefiderocol has been proposed for the treatment of severe pathogens, such as *Acinetobacter baumannii*, *Klebsiella pneumoniae* and *P. aeruginosa*. ¹¹ In the present study, the activity of cefiderocol was tested against *P. aeruginosa* exhibiting high levels of resistance to a great variety of antimicrobial agents, including colistin, with the inclusion criteria being resistance to carbapenems or antipseudomonal cephalosporins. The results showed excellent activity of cefiderocol, irrespective of the presence of carbapenemases or ESBLs, with only 1 isolate showing a MIC of 8 mg/L, and 15 exhibiting MICs of 2 mg/L. The excellent activity of cefiderocol against colistin-resistant isolates should be mentioned, with none being considered resistant according to any of the three guidelines considered, and only one qualified as intermediate by the FDA. ^{25,29,30} This is of special relevance considering the use of colistin as a last-resort antimicrobial agent. ³⁶

In agreement with the present results, previous studies have shown that the presence of VIM, IMP or NDM in *P. aeruginosa* isolates was not consistently associated with resistance to cefiderocol, with the MICs of this agent ranging from 0.06 to 4 mg/L.^{8,12–14} These findings were irrespective of the concomitant presence of more than one carbapenemase, similar to what was observed by our group.¹⁴ Nevertheless, isolates presenting carbapenemases tend to have slightly higher cefiderocol MIC levels than those not possessing carbapenemases. In this regard, of note was the high number of isolates (eight isolates) with a MIC of 2 mg/L, classified

JAR

Table 4. Main OprD alterations^a

Frameshift				
Insertion	Deletion	STOP	Other	
G ₆₇₈ (5) G ₂₆₂ (1) ₇₁₄ AA ₇₁₅ (1) C ₁₂₀₆ (1) G ₈₅₅ (1) A ₁₂₂₂ (1) G ₄₅₀ (1) C ₆₇₈ (1)	C ₂₁₂ (4) ₂₈₅ GCTC ₂₈₈ (1) T ₉₁₅ (4) A ₈₈₇ (1) ₁₁₁₄ AT ₁₁₁₅ (1) A ₇₁₀ (1)	W ₂₇₇ (1) Y ₄₉ (5) W ₄₁₇ (7) W ₃₃₉ (1)	$\Delta_{335} \text{GEKSWQARYDLNLASYGVPGLTFMVRYINGKDIDGTKMSDNNVGYKNYGY}_{374} \ (2)^b \\ :: _{208} \text{CCT}_{210} \ (1)^c$	

The numbers in parentheses are the number of isolates possessing a specific change.

^cThe insertion encodes proline.

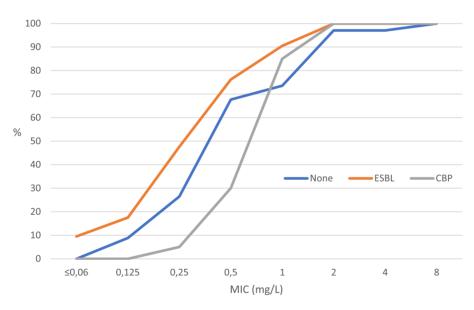


Figure 1. Cumulative cefiderocol MIC distributions. CBP, carbapenemases.

as cefiderocol intermediate according to FDA criteria and in which no mechanism of resistance sought was detected.

The only isolate with a MIC of 8 mg/L carried neither an ESBL nor carbapenemase sought and possessed only an inactivating alteration in OprD. Isolates with similar cefiderocol MIC levels, with no specific mechanisms of resistance (ESBL or carbapenemase), have also been reported in other studies. Different aspects may underlie these MIC levels, including alterations in siderophore receptors, modifications leading to cefiderocol-inactivating PDCs (*Pseudomonas*-derived cephalosporinases), as well as the presence of unsought ESBLs or carbapenemases (studies in process). In this sense, we detected a high number of isolates (eight isolates) with a MIC of 2 mg/L, classified as cefiderocol-intermediate according to FDA criteria, and in which no sought mechanism of

resistance was found. Regarding the OprD amino acid substitution Y_{49}^{*} observed in the cefiderocol-resistant isolate, its presence in other isolates, including one with a MIC of 0.5 mg/L, did not support a role in the development of resistance to cefiderocol. Furthermore, the presence of an additional great variety of OprD-inactivating mutations irrespective of cefiderocol MIC levels, precludes considering OprD inactivation as being involved in cefiderocol resistance. In agreement with our results, previous studies of the mechanisms of carbapenem resistance amongst Peruvian *P. aeruginosa* isolates have shown OprD mutations as the main contributor. 21

In any case, the presence of cefiderocol non-susceptible isolates in the absence of the use of this agent highlights the need to preserve cefiderocol by adhering to rational and structured

^aNo alterations other than amino acid changes or well-established non-inactivating alterations (e.g. ₃₇₂V-DSSSSYAGL-Y₃₈₄) were observed in the remaining six isolates.

^bAlthough stated as a 'non-inactivating mutation' because neither frameshift nor premature STOP codon was present, a severe effect on OprD functionality is the most probable scenario.

use to maintain its activity as long as possible, and avoid the appearance of cefiderocol-resistant isolates.³⁸

It is worth mentioning that several studies have shown the prevalence of carbapenem resistance among P. aeruginosa in Peruvian ICUs is up to levels of 70% or higher. 2,39 In the present study, the inclusion criteria referred only to carbapenem- and/or third- and fourth-generation cephalosporin-resistant *P. aeruginosa*. Hence, the levels of resistance to the remaining antimicrobial agents should be considered representative of the resistance to other antipseudomonal agents among these specific subpopulations of *P. aeruginosa* in the area, delineating a worrisome scenario in which near pan-resistant isolates are circulating in Peruvian health centres, thus highlighting the urgent need for new therapeutic options. In this regard, studies of the use of cefiderocol in treating life-threatening infection with no alternative treatment options, including infections by P. aeruginosa, have shown 28 day survival rates higher than 75%. 14 This scenario allows consideration of cefiderocol as a true alternative agent for difficult-to-treat infections caused by carbapenem-resistant *P. aeruainosa* in Peru. and these data can probably be extrapolated to neighbouring countries. 40 Nevertheless, it is necessary to highlight again the need for its judicious use, considering cefiderocol as a last-resort antimicrobial agent and establishing cefiderocol susceptibility levels whenever possible.

No data about clonality of the included isolates were obtained, with this being the main limitation of the study. Nevertheless, the isolates were recovered in nine different health centres, which together with the high diversity of *oprD* alterations, strongly suggests a high clonal diversity.

In summary, the present results describe the activity of cefiderocol against extensively resistant clinical isolates of *P. aerugi*nosa in Peru, suggesting its potential role in the treatment of severe infections in this country.

Acknowledgements

We thank Donna Pringle for language review.

Funding

This study was supported by an unrestricted fellowship of Shionogi & Co. Ltd and by the Universidad Cientifica del Sur (066-2020-PRO99). This study was developed within the frame of the net 221RT0113 from the Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED). The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Transparency declarations

Cefiderocol is owned by Shionogi & Co. Ltd.

References

- **1** Castillo AK, Espinoza K, Chaves AF *et al.* Antibiotic susceptibility among non-clinical *Escherichia coli* as a marker of antibiotic pressure in Peru (2009-2019): One Health approach. *Heliyon* 2022; **8**: e10573. https://doi.org/10.1016/j.heliyon.2022.e10573
- **2** Flores-Paredes W, Luque N, Albornoz R *et al.* Evolution of antimicrobial resistance levels of ESKAPE microorganisms in a Peruvian IV-level

- hospital. Infect Chemother 2021; **53**: 449–62. https://doi.org/10.3947/ic. 2021.0015
- **3** Sulis G, Sayood S, Gandra S. Antimicrobial resistance in low- and middle-income countries: current status and future directions. *Expert Rev Anti Infect Ther* 2022; **20**: 147–60. https://doi.org/10.1080/14787210.2021.1951705
- **4** So M, Walti L. Challenges of antimicrobial resistance and stewardship in solid organ transplant patients. *Curr Infect Dis Rep* 2022; **24**: 63–75. https://doi.org/10.1007/s11908-022-00778
- **5** Gama ASM, Secoli SR. Self-medication practices in riverside communities in the Brazilian Amazon rainforest. *Rev Bras Enferm* 2020; **73**: e20190432. https://doi.org/10.1590/0034-7167-2019-0432
- **6** Sono TM, Yeika E, Cook A *et al.* Current rates of purchasing of antibiotics without a prescription across sub-Saharan Africa; rationale and potential programmes to reduce inappropriate dispensing and resistance. *Expert Rev Anti Infect Ther* 2023; **21**: 1025–55. https://doi.org/10.1080/14787210.2023.2259106
- **7** Jasovský D, Littmann J, Zorzet A *et al.* Antimicrobial resistance—a threat to the world's sustainable development. *Ups J Med Sci* 2016; **121**: 159–64. https://doi.org/10.1080/03009734.2016.1195900
- **8** Weber C, Schultze T, Göttig S *et al.* Antimicrobial activity of ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol against multidrugresistant *Pseudomonas aeruginosa* recovered at a German university hospital. *Microbiol Spectr* 2022; **10**: e0169722. https://doi.org/10.1128/spectrum.01697-22
- **9** Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with gram-negative bacteria: restoring the miracle or false dawn? *Clin Microbiol Infect* 2017; **23**: 704–12. https://doi.org/10.1016/j.cmi.2017.09.001
- **10** Zampaloni C, Mattei P, Bleicher K *et al.* A novel antibiotic class targeting the lipopolysaccharide transporter. *Nature* 2024; **625**: 566–71. https://doi.org/10.1038/s41586-023-06873-0
- **11** Wang L, Zhu J, Chen L et al. Cefiderocol: clinical application and emergence of resistance. *Drug Resist Updat* 2024; **72**: 101034. https://doi.org/10.1016/j.drup.2023.101034
- **12** Alzayer M, Alghoribi MF, Alalwan B *et al.* In vitro activity of cefiderocol against clinically important carbapenem non-susceptible gram-negative bacteria from Saudi Arabia. *J Glob Antimicrob Resist* 2023; **32**: 176–80. https://doi.org/10.1016/j.jgar.2022.11.013
- **13** Delgado-Valverde M, Portillo-Calderón I, Recacha E *et al. In vitro* activity of cefiderocol compared to other antimicrobials against a collection of metallo-β-lactamase-producing gram-negative bacilli from southern Spain. *Microbiol Spectr* 2023; **11**: e0493622. https://doi.org/10.1128/spectrum.04936-22
- **14** Satlin MJ, Simner PJ, Slover CM *et al.* Cefiderocol treatment for patients with multidrug- and carbapenem-resistant *Pseudomonas aeruginosa* infections in the compassionate use program. *Antimicrob Agents Chemother* 2023; **67**: e0019423. https://doi.org/10.1128/aac. 00194-23
- **15** Chichón G, López M, de Toro M *et al.* Spread of *Pseudomonas aeruginosa* ST274 clone in different niches: resistome, virulome, and phylogenetic relationship. *Antibiotics* 2023; **12**: 1561. https://doi.org/10.3390/antibiotics12111561
- **16** Yuan Q, Guo L, Li B *et al.* Risk factors and outcomes of inpatients with carbapenem-resistant *Pseudomonas aeruginosa* bloodstream infections in China: a 9-year trend and multicenter cohort study. *Front Microbiol* 2023; **14**: 1137811. https://doi.org/10.3389/fmicb.2023.1137811
- **17** Barrientos-Yong RS, Hinojosa-Salas BA, Salas-Ponce PG *et al.* High rates of extensively drug-resistant *Acinetobacter baumannii* in a Peruvian hospital 2013-2019. *Trop Doct* 2023; **53**: 248–55. https://doi.org/10.1177/00494755221142939

JAR

- Guibert F, Espinoza K, Taboada-Blanco C *et al.* Traditional marketed meats as a reservoir of multidrug-resistant *Escherichia coli. Int Microbiol* 2025; **28** Suppl 1: 27–43. https://doi.org/10.1007/s10123-023-00445-y
- Palma N, Pons MJ, Gomes C *et al.* Resistance to quinolones, cephalosporins and macrolides in *Escherichia coli* causing bacteraemia in Peruvian children. *J Glob Antimicrob Resist* 2017; **11**: 28–33. https://doi.org/10.1016/j.jgar.2017.06.011
- **20** Horna G, Quezada K, Ramos S *et al.* Specific type IV pili groups in clinical isolates of *Pseudomonas aeruginosa*. *Int Microbiol* 2019; **22**: 131–41. https://doi.org/10.1007/s10123-018-00035-3
- Horna G, López M, Guerra H *et al.* Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of *Pseudomonas aeruginosa*. *Sci Rep* 2018; **8**: 16463. https://doi.org/10.1038/s41598-018-34694-z
- **22** Gonzales-Escalante E, Vicente-Taboada W, Champi-Merino R *et al.* Metalo-ß-lactamasas en aislamientos clínicos de *Pseudomonas aeruginosa* en Lima, Perú. *Rev Peru Med Exp Salud Publica* 2013; **30**: 241–5. https://doi.org/10.17843/rpmesp.2013.302.198
- **23** Horna G, Amaro C, Palacios A *et al.* High frequency of the *exoU+/exoS+* genotype associated with multidrug-resistant "high-risk clones" of *Pseudomonas aeruginosa* clinical isolates from Peruvian hospitals. *Sci Rep* 2019; **9**: 10874. https://doi.org/10.1038/s41598-019-47303-4
- Salvador-Luján G, García-de-la-Guarda R, Gonzales-Escalante E. Caracterización de metalo-β-lactamasas en aislados clínicos de *Pseudomonas aeruginosa* recuperados de pacientes hospitalizados en el hospital militar central. *Rev Peru Med Exp Salud Publica* 2018; **35**: 636–41. https://doi.org/10.17843/rpmesp.2018.354.3755
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Supplement: M100—S31. 2021.
- Ruiz J, Egóavil-Espejo R, Ymaña B *et al.* Determinación e interpretación de la sensibilidad a cefiderocol. *South Health* 2024; **1**: e-008. https://doi.org/10.21142/SH-01-2024-e001
- Simmer PJ, Patel R. Cefiderocol antimicrobial susceptibility testing considerations: the Achilles' heel of the Trojan horse? *J Clin Microbiol* 2021; **59**: e00951–20. https://doi.org/10.1128/JCM.00951-20
- **28** Kadeřábková N, Mahmood AJS, Mavridou DAI. Antibiotic susceptibility testing using minimum inhibitory concentration (MIC) assays. *NPJ Antimicrob Resist* 2024; **2**: 37. https://doi.org/10.1038/s44259-024-00051-6
- **29** European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters version 11. 2021. https://www.eucast.org/clinical_breakpoints

- US Food and Drugs Administration. Cefiderocol injection. Updated January 2025. https://www.fda.gov/drugs/development-resources/cefiderocol-injection
- **31** Bogaerts P, Rezende de Castro R, de Mendonça R et al. Validation of carbapenemase and extended-spectrum β -lactamase multiplex endpoint PCR assays according to ISO 15189. J Antimicrob Chemother 2013; **68**: 1576–82. https://doi.org/10.1093/jac/dkt065
- Ellington MJ, Kistler J, Livermore DM *et al.* Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. *J Antimicrob Chemother* 2007; **59**: 321–2. https://doi.org/10.1093/jac/dkl481
- Mlynarcik P, Roderova M, Kolar M. Primer evaluation for PCR and its application for detection of carbapenemases in *Enterobacteriaceae*. *Jundishapur J Microbiol* 2016; **9**: e29314. https://doi.org/10.5812/jjm. 29314
- Kunz Coyne AJ, El Ghali A, Holger D *et al.* Therapeutic strategies for emerging multidrug-resistant *Pseudomonas aeruginosa. Infect Dis Ther* 2022; **11**: 661–82. https://doi.org/10.1007/s40121-022-00591-2
- Strateva T, Yordanov D. *Pseudomonas aeruginosa*—a phenomenon of bacterial resistance. *J Med Microbiol* 2009; **58**: 1133–48. https://doi.org/10.1099/jmm.0.009142
- El-Sayed Ahmed MAEG, Zhong LL, Shen C *et al.* Colistin and its role in the era of antibiotic resistance: an extended review (2000-2019). *Emerg Microbes Infect* 2020; **9**: 868–85. https://doi.org/10.1080/22221751. 2020.1754133
- Karakonstantis S, Rousaki M, Kritsotakis EI. Cefiderocol: systematic review of mechanisms of resistance, heteroresistance and *in vivo* emergence of resistance. *Antibiotics* 2022; **11**: 723. https://doi.org/10.3390/antibiotics11060723
- Brakert L, Berneking L, Both A *et al.* Rapid development of cefiderocol resistance in a carbapenem-resistant *Pseudomonas aeruginosa* isolate associated with mutations in the pyoverdine biosynthesis pathway. *J Glob Antimicrob Resist* 2023; **34**: 59–62. https://doi.org/10.1016/j.jgar. 2023.06.003
- Tapia Pilamonta EJ, Jaramillo Ruales EK. *Pseudomonas aeruginosa* resistente a los carbapenémicos antes y durante la pandemia, una revisión en latinoamérica. *Salud Cienc Tecnol* 2023; **3**: 477. https://doi.org/10.56294/saludcyt2023477
- Karlowsky JA, Lob SH, Siddiqui F *et al.* In vitro activity of imipenem/relebactam against non-*Morganellaceae* Enterobacterales and *Pseudomonas aeruginosa* in Latin America: SMART 2018-2020. *Braz J Infect Dis* 2023; **27**: 102775. https://doi.org/10.1016/j.bjid.2023.102775