The Coris BioConcept OXA48 K-SeT Immuno-Chromatographic Assay Detects OXA48-type Carbapenemases

with High Sensitivity and Specificity

ECCMID Amsterdam 2016

BM Willey, X Trimi, R Ioboni, DA Boyd, G Ricci, DN Grohn, D Terenzi, A Mazzulli, L Mataseje, M Mulvey, P Lo, T Mazzulli, SM Poutanen Mount Sinai Hospital/UHN, University of Toronto, Michener Institute, Toronto; William Osler Health Sciences Centre, Brampton; National Microbiology Laboratory, Winnipeg, Canada

ABSTRACT

P0946

penemase producing organisms (CPO) from epidemiologically non-significant carbapenem-resistant PO. The class D CPO, which may carry a diversity of OXA48-related sequence types, are particularly ranging to detect further complicating the control of rapidly emerging CPO. Rapid tests are needed to we recognition of highly-significant CPO. This retrospective study evaluated a novel low-complexity How line assay, the Coris BioConcept OXA48 K-SeT that was designed to detect OXA48-type penemases in 15 minutes.

lateral-flow line assay, the Coris BioConcept OXA48 K-Sef That was designed to detect OXA48-kype carbappensases in 15 minutes.

Methods: 259 highly-characterized (phenotypically and PCR/sequencing) species-diverse Gram-negative isolates were binded to prevent bias. Of these, 33 (19 Klebsiella pneumoniae, 14 Escherichia coil) had class D genotypes: 26 had class D alone (15 OXA48, 6 OXA181, 4 OXA323, 1 OXA324,) and 7 had class D in combination with class B genotypes (4 NDM-OXA818, 3 NDM-OXA323). The 256 non-class D isolates included to 8 Gaston with class B genotypes (4 NDM-OXA818, 3 NDM-OXA323). The 256 non-class D isolates included to 8 Gaston oxidated multiple mechanisms that together contributed to varing degrees of carbappenem and/or oxytimio-cephalosporin resistance. Notably at least 14 carried OXA136, 1 OXA534, and 1 OXA323, while derepressed or plasmid-mediated ampć, diverse ESBB, ompć/ompć or ompks/gompks/6 mutations were common and 1 had intrinsic cphA. The OXA48 K-Sef assay was performed as directed using a single colory from each isolate to inoculate the test. For this pick, growth closes to selective entapenem disc on MacConkey, Columbia Sheep Blood or Mueller-finitron agars (Oxad) was used. After 15 minutes at room temperature, results were documented independently by 5 readers to selective entorials and only vas considered a negative result. Oxnemsus data were analyzed for sensitivity and specificity for class D CPO detection; 95% confidence intervals (CI) were calculated using swwx.graphpad.com.

Results The OXA48 K-Sef detected two clear bands in 102/6 strains carrying a class D carbapenemase genes (OXA48, OXA450, OXA50, OXA53, 10XA234) as well in 773 strains carrying a class D carbapenemase genes (OXA48, OXA450, OXA512, 10XA243) as well in 773 strains carrying a loss D carbapenemase genes (OXA48, OXA450, OXA512, OXA252, 10XA252) signed and las lostes that co-carried the common OXA152 gene. The resulting specificity was 10XG (555 CE 87,6-600, in contrast, the OXA48 K-sef detected only the single

Conclusions: This study found the low-complexity Coris Bloconcept OXA48 K-SeT assay to be extremely et to use and simple to interpret. It provided highly accurate results (100% sensitivity and 100% specificity) wused directly from colonies grown on MacConkey, Columbia Sheep Blood or Mueller-Hinton based agars within 15 minutes of set-up.

INTRODUCTION

Rapid accurate detection of pan-resistant CPO is crucial for risk-reduction in patient care and to prevent outbreaks. Culture is typically used over PCR in clinical laboratories as the primary means to detect CPO given the lower cost of culture and the limited targets associated with PCR. CPO are typically detected in clinical specimens when routine susceptibilities indicate rea. Or one typically detected in clinical specimens when routine susceptibilities indicate resistance to ≥1 carbapenems. Surveillance specimens typically first undergo selective culture, followed by algorithms that in many laboratories include overnight meropenem disc diffusion using the sensitive screen breakpoint of ≤25mm to maximize specificity.

At this point, an increasing number of options have become available for confirming suspected CPO. Molecular tests have been considered "gold standard" yet no single assay detects all genotypes, and inevitable evolutionary diversification has lead to genetic drift at key primer stites that, unknowingly in certain assays, reduce PCR sensitivity. Low-complexity commercial PCR assays are costly and don't cover all types; conversely, cheaper more-flexible conventional assays are too labour-intensive for today's busy clinical lab settings, especially in low prevalence areas. Although PCR remains an important tool for selective use in high-risk situations to enable direct-from-swab detection of more common genotypes, it is not available to all laboratories

Newly recommended same-day phenotypic tests, such as the CARBA-NP-based assays, while sensitive for class A and B CPO, have proven to produce false-negatives with class D CPO in many laboratories. Also problematic is that these and similar phenotypic tests require very large inoculums and cannot be done from MacConkey-based agars, which is frequently the primary medium on which single colonies of a suspect CPO are typically immediately available.

Thus, this retrospective study aimed to determine the class D CPO detection accuracy using the newly available. As Set assay (Coris BioConcept, Belgium; Figure 1), it is an inexpensive, low-complexity, rapid immuno-chromatographic lateral flow test specifically designed to detect only class D OXA48 and closely related genotypes. Advantages are that it may be done from any agar and requires only 1 colony of Enterobacteriaceae to produce a reputedly highly sensitive and specific easily interpreted visual result within 15 minutes of set-up.

Figure 1. The Coris BioConcept OXA48 K-Set test is a lomplexity immuno-chromatographic lateral-flow line ass complexity immuno-chromatographic lateral-flow line assay, for highly sensitive and specific detection/confirmation of OXA8-elated carbapenemases in Enterobacteriaceae. Tests require only olony from any common laboratory agar. Within is minutes of ses up, brick-red lines become visible at "C" (control) and "T" (test) of spositions in a OXA48-positive test organismi (see 21 gift), or only at the "C" position in a negative test organism (see 214 right).

METHODS

Table 1 (below) describes 259 species-diwers clinical isolates selected for study. All isolates were characterized by conventional PCR for genes encoding ampCIESBL/CPO, etc., and sequenced to determine allelic variations (i.e. for all bla0XA48-like genes) when needed isolates were identified to species-level by MALDI-TDF (bioMérieux's VITEK MS Plus). Phenotypic expression of CPO had been measured by disc diffusion to meropenem using the screen breakpoint of 25mm. Reactions to inhibitors (bornoic and dipicolinic acids) were ascertained alongside temocillin susceptibility testing (ROSCO KPC+MBL+OXA48 Confirm kib.). Only 1 isolate/patient was included, except if 21 genotype or 21 genus/species was confirmed as CPO from a patient. Isolate identities were blinded to prevent bias.

contirmed as LPO from a patient. Isolate identities were blinded to prevent bias.

The OXA48 K-SET test (Con's BioConcept, Begljum) is an immuno-chromatographic assay that is performed directly from colonies on any agar to provide a rapid specific confirmation of absence/presence of class D carbapenemases common to Enterobacteriaceer. The test relies on antigen capture via a set of specific monoclonal antibodies raised from mice to react with the specific types only (OXA48, OXA45, OXA45, OXA430, OXA23, OXA244, OXA244). Antibodies cross-reactive with other OXA-genotypes (non-carbapenemases: OXA45, OXA437, OXA45; Acinetobacter carbapenemases: OXA43, OXA24, OXA55, OXA56, OXA443, OXA45; Acinetobacter carbapenemases: OXA43, OXA24, OXA57, OXA58, OXA443, OXA45, OXA45,

housed in a plastic lateral-flow chamber (Figure 1.).

On recovery from -80°C and on 20rd subculture, extrapenem discs were placed on agars (Oxoid) whether CPO or not to maintain selective pressure. OXA48 K-SeT tests were performed as per package insert. A single colony picked from growth closest to ertapenem on MacConkey CV, Columbia 5x Sheep blood or Mueller-Hinton agars, was inoculated into reagent in a tube provided in the kit. When mixed, a dispensing cap, also provided in the kit was placed on the tube and inverted to act as a dispenser to transfer the inoculated reagent into the lateral flow device. After 15 min incubation at room temperature, each OXA48 K-SeT was examined independently by 5 readers for absence/presence of brick-red lines at control (C) and test (T) positions (Figure 2), where OXA48-positives had 2 lines (C+T+), while in negatives, only the "C" line developed. Individual results were later correlated to identifyeror. PCR was used to confirm genotypes in discrepancies. Consensus K-SeT data was analyzed for sensitivity and specificity for detecting OXA48-like genes from suspect CPO. 95% confidence intervals (C) were calculated using www.graphad.com.

Table 1. Characteristics of 259 Gram-negative bacilli used to evaluate Class D OXA48-like CPO detection using the Coris BioConcept OXA48 K-SeT immuno-chromatographic assay Ambiter (No.) [OC Genotypex (No.)] Special selectification No. Inoculated to No. POSITIVE by

Ambler (No.)	CPO Genotypes (No.)	Species identification	No. Inoculated to OXA48 K-SeT	No. POSITIVE by OXA48 K-SeT
Class A CPO (108)	blaKPC (99)	Citrobacter freundii	2	0
		Enterobacter aerogenes	3	0
		Enterobacter cloacae	35	0
		Escherichia coli	12	0
		Klebsiella oxytoca	1	0
		Klebsiella pneumonia	46	0
	blaGES5 (2)	Klebsiella oxytoca	2	0
	blatMtt (1)	Enterobacter cloacae	1	0
	blaNMCA (2)	Enterobacter cloacae	2	0
	blaSME (4)	Serratia marcescens	4	0
Class B CPO (80)	blaIMP7 (1)	Pseudomonas aeruginosa	1	0
	blaNDM (73)	Acinetobacter baumannii	1	0
		Citrobacter freundii	1	0
		Enterobacter cloacae	3	0
		Escherichia coli	30	0
		Klebsiella pneumoniae	33	0
		Morganella morganii	4	0
		Proteus mirabilis	1	0
	blaVIM (6)	Citrobacter freundii	1	0
		Enterobacter cloacae	4	0
		Pseudomonas putida	1	0
Classes B + D CPO (7)	blaNDM+blaOXA181 (1)	Escherichia coli	1	1
	blaNDM+blaOXA181 (3)	Klebsiella pneumoniae	3	3
	blaNDM+blaOXA232 (1)	Escherichia coli	1	1
	blaNDM+blaOXA232 (2)	Klebsiella pneumoniae	2	1
Class D CPO (26)	blaOXA48 (15)	Escherichia coli	8	8
		Klebsiella pneumoniae	7	7
	blaOXA181 (6)	Escherichia coli	2	2
		Klebsiella pneumoniae	4	4
	blaOXA232 (4)	Escherichia coli	1	1
		Klebsiella pneumoniae	3	3
	blaOXA244 (1)	Escherichia coli	1	1
Non-CPO (38)	ompC-ompF (3)	Enterobacter cloacae	1	0
		Escherichia coli	3	0
	ompK35-ompK36 (6)	Klebsiella pneumoniae	6	0
	Weak OXY promoter (1)	Klebsiella oxytoca	1	0
	Other mechanisms (26)	Enterobacteríaceae	26	0
	blaOXA252 (1)	Shewanella putrifaciens	1	0

RESULTS

- Tables 2 and 3 below summarize results obtained using the Coris BioConcept OXA48 K-SeT.
- The OXA48 K-SeT detected two strong brick-red bands in 26/26 strains carrying class D carbapenemase genes only (OXA48, OXA181, OXA232, 1 OXA244)
 - Two bands were also detected in 7/7 strains carrying a class D carbapenemase genes (OXA181 and OXA232) plus NDM.
- The resulting sensitivity for detection of OXA48-related genes was 100% (95% CI: 87.6-100).
- Conversely, the OXA48 K-SeT was negative and detected only the single control band in 226/226 non-class D isolates including a Shewenella putrifaciens with progenitor OXA252, an Acinetobacter baumannii with OXA51, and all isolates that carried the common OXA1 gene.
- The resulting specificity for detecting only OXA48-related genes was 100% (95% CI: 98-100).

Figure 2. As seen in this batch of study isola rigure 2. As seen in this bactor of study solates tested using the Coris BioConcept OXA48 lateral flow assay, the OXA48-positives (2 brick-red lines at "C" and "T") and OXA48-negatives (1 brick-red line at "C") were readily distinguished as reaction line at "C") were readily distinguished as reaction lines clearly visible and uniform for all organisms tested throughout the study

Table 2. Evaluation of the CORIS BioConcept's OXA46 i	N-Set for detection of OAA46-like Cr	
Genotype composition of challenge isolates	No. (%) tested/No. (%) positive	
blaOXA48-like (OXA48, OXA181, OXA232, OXA244)	26 (10)/26 (100)	
blaNDM plus blaOXA48-like (OXA181, OXA232)	7 (2.7)/7 (100)	
Total OXA48-like CPO tested	33 (12.7)/33 (100)	
blaKPC	99 (38.2)/0 (0)	
blaNDM	73 (28.2/0 (0)	
blaVIM	6 (2.3)/0 (0)	
blaSME	4 (1.5)/0 (0)	
blaNMCa/IMI1	3 (1.2)/0 (0)	
blaGES5	2 (0.8)/0 (0)	
blaIMP7	1 (0.4)/0 (0)	
Total Non-OXA48-like CPO tested	188 (72.6)/0 (0)	
Non-CPO (including OXA1, OXA51, OXA252, cphA)	38 (14.7)/0 (0)	
Total Non-CPO tested	38 (14.7)/0 (0)	
Total non-OXA48-like isolates tested	226 (87.3)/0 (0)	
Total isolates tested	259	

Sensitivity (95%CI) for detecting OXA48-like genes only Specificity (95%CI) for excluding non-OXA48 CPO and non-CPO 100% (87,6-100)

CONCLUSIONS & DISCUSSION

Use of Coris BioConcept's OXA48 K-SeT as a rapid Class D CPO confirmatory test

The Coris BioConcept's OXA48 K-SeT assay provided highly accurate results (100% sensitive and specific) as it detected all allelic variants related to blaOXA48 that produced carbapenemases (OXA48, OXA181, OXA232, OXA244) and excluded closely related non-carbapenemases as evidenced by a clearly negative result for Shewanella putrifaciens with chromosomal blaOXA252

Experience from this study found the Coris Bioconcept OXA48 K-SeT assay readily qualified as a low-complexity test as there was minimal hands-on time and required no laboratory equipment; it was extremely easy to use and was simple to interpret.

The OXA48 K-SeT was also found to be a very practical test since it could be used directly from colonies grown on any common primary medium including MacConkey, Columbia Sheep Blood or Mueller-Hinton based agars

Truthermore, from a patient management perspective, the K-SeT would be able to provide reliable results within 15 minutes of test set-up, and thus would enable immediate infection control attention to a newly identified patient positive for an OXA48-type CPO

The only drawback is that the evaluated test only targets a single CPO class. However, Coris BioConcept has already produced another K-SeT specific for KPC which is also reportedly 100% sensitive and specific (Glupzynski et al., JAC 2016).

Acknowledgements

OXA48 K-SeT kits, sufficient for this study, were kindly provided by Thierry Leclipteux, Coris BioConcept