

28th ECCMID, Madrid, Spain, 2018

Carbapenemase-producing Enterobacteriaceae (CPE) Detection Directly from Surveillance Rectal Swab by Immunochromatographic Test

Clara R. L. Fonseca^{1*}, Agda V. Braga¹, Carla R. Ferrari¹, Thomas Chagas-Neto¹, Ana C. Ramos², Ana C. Gales², Adagmar Andriolo¹, Cecilia G. Carvalhaes¹

¹Microbiology Section, Discipline of Laboratory Medicine, UNIFESP, Sao Paulo, Brazil; ²ALERTA laboratory, Discipline of Infectious Diseases, UNIFESP, Sao Paulo, Brazil

Background.

The prevalence of CPE is increasing worldwide. Controlling their spread is important in the hospital settings and it should relies on the using of rapid diagnostic techniques.

Objectives:

Herein we evaluated an immunochromatographic device, RESIST-3 O.O.K ®, which rapidly detected OXA-48-; OXA-163- and KPC-producing Enterobacteriaceae directly from rectal swabs using enrichment broth at different incubation periods.

Material and Methods:

Samples: All rectal swabs for CPE detection were included in this study between Aug and Nov/2017. **Culture based method (CBM):** The samples were inserted and homogenized into a 3 mL BHI tube and subcultured onto MacConkey (MAC) agar

plate with carbapenem discs. Ten microliters were delivered onto a Chromagar KPC® plate for bacterial colony count (BCC). All plates were incubated at $35\pm2^\circ$ C overnight. The BHI tube was incubated with a MER disc (10 μg). After a 4-hour incubation period, all the BHI tubes were resubmitted to subculture onto MAC and Chromagar KPC.

Immunochromatografic procedure: In parallel, the bacterial pellet recovered from 400 μ L of BHI suspension was submitted to RESIST-3 O.O.K. at time zero (T0). The BHI tube was incubated with a MER disk (10 μ g) and the RESIST-3 O.O.K. test was repeated at T1h; T2h; T4h; T6h and T8h.

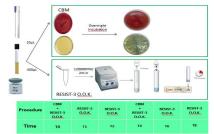


Figure 1. CBM and immunocromatographic procedures used on this study.

Susceptibility testing: Carbapenem susceptibility testing was performed with all bacterial colonies recovered from MAC.

Detection of carbapenemase encoding-genes:

The K-Set results were compared to CBM and the discordant results were submitted to detection of $bla_{\rm KPC},\ bla_{\rm NDM}$ and $bla_{\rm OXA-48}.$ Statistical analysis were performed according to the incubation period and BCC.

Results

From 503 samples, 148 (29%) were positive for CPE by CBM. The bacterial species isolated were K. pneumoniae (97%), Enterobacter spp (1%), Serratia spp (1%) and E.coli (1%). RESIST-3 O.O.K. sensitivity (SE) and specificity (SP) were 91% and 100%, respectively. SE was proportional to the incubation period (T0, 25%, T1, 37%, T2, 52%, T4, 69%, T6, 79% and T8, 91%). In 33 samples the results were discrepant. Among them, $bla_{\rm KPC}$ (n = 10) and $bla_{\rm NDM}$ (n = 1) were detected in 11 samples. None of the carbapenemase-encoding genes included in this study were detected in the remaining 22 samples.

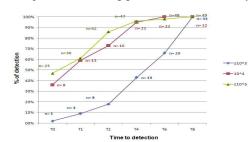


Figure 2. Detection of CPE by RESIST-3 O.O.K. according to the incubation time and bacterial inoculum in the rectal swab.

N°	CPE - ID	всс то	BCC T4	OOK-KSeT result	Molecular detection
48	K. pneumoniae	≤10 ³	≥10 ⁵	NEG	bla _{KPC}
139	K. pneumoniae	No grow	≤10 ³	NEG	bla _{KPC}
155	K. pneumoniae	10 ⁴	10 ⁴	NEG	bla _{KPC}
212	K. pneumoniae	≤10 ³	≤10 ³	NEG	bla _{KPC}
214	K. pneumoniae	No grow	≤10 ³	NEG	bla _{KPC}
269	K. pneumoniae	≥10 ⁵	≥10 ⁵	NEG	bla _{KPC}
400	K. pneumoniae	≤10 ³	≤10 ³	NEG	bla _{KPC}
448	K. pneumoniae	No grow	≤10 ³	NEG	bla _{KPC}
464	E. asburiae	≤10 ³	10 ⁴	NEG	bla _{KPC}
509	K. pneumoniae	≤10 ³	≤10 ³	NEG	bla _{KPC}
49	K nneumoniae	<10 ³	<10 ³	NEG	hla

Table 1. False-negative results observed on RESIST-3 O.O.K. T test

Conclusion:

The K-Set OOK proved to be a sensitive test for detecting KPC-producing isolates directly from rectal swabs at the same day. The test is designed to detect only OXA-48-like, OXA-163-like and KPC-like carbapenemases. False-negative results may occur due to the presence of other carbapenemases or low bacterial inoculum. Therefore, it is recommended to be performed in parallel to the culture.

Pasteran et al., J Clin Microbiol. 2016 Nov;54(11):2832. Nodari et al., J Microbiol Methods. 2017 Aug;139:92. Adler et al., J Clin Microbiol. 2011; 49:2239.

Glupczynski et al., J Antimicrob Chemother. 2016 May;71(5):1217.

CDC guideline. Laboratory Protocol for Detection of Carbapenem-Resistant or Carbapenemas-Producing. Klebsiella opp. and E. coli from Rectal Swabs.

https://www.edc.gov/bai/ndfs/labsettings/klebsiella opr. ecoli ndf