Rapid detection of carbapenemase-producing Enterobacteriaceae directly from positive blood cultures by a new immunochromatographic assay

Axel Hamprecht a,b, Harald Seifert a,b and Ahmad Saleh a,b

aInstitute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany; bDZIF (German Centre for Infection Research), partner site Cologne-Bonn; presenting author

Background
- Bloodstream infections caused by carbapenemase-producing Enterobacteriaceae (CPE) associated with treatment failure and increased mortality
- Detection of CPE from blood cultures (BC) by standard methods takes 20-96 hours

Objectives
- to develop and evaluate a protocol for the rapid detection of carbapenemases directly from positive BC using a new multiplex immunochromatographic test (ICT)

Methods
- Blood cultures spiked with Enterobacteriaceae and incubated in a BD Bactec FX system until positive
- 170 molecularly characterized clinical isolates
 - K. pneumoniae (N=84), E. coli (N=53), F. tularensis (N=15), E. aerogenes (N=6), C. freundii (N=5), other species (N=7)
 - 126 CPE
 - 79 OXA-48-like, 18 KPC, 29 NDM
 - 44 carbapenemase negative isolates
- Blood from positive BC bottles was hemolyzed, bacteria concentrated by centrifugation and lysed
- Lysate was transferred to the RESIST-3 O.K.N. ICT® (Coris BioConcept, Gembloux, Belgium), which detects OXA-48-like, KPC and NDM (Fig. 1)

Results
- Without pretreatment, results cannot be easily determined because of red background
- After pretreatment with SDS, all carbapenemases can be easily identified (Fig. 2)
- Sensitivity and specificity 100% (Table 1)
- Easy and rapid protocol, time to result 20-30 min

Figure 1. Workflow for the preparation of ICT directly from positive blood cultures; SDS: sodium dodecyl sulfate; PBS: phosphate buffered saline

Figure 2. Result of the ICT from blood cultures

<table>
<thead>
<tr>
<th>Carbapenemase</th>
<th>positive tests/total isolates</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXA-48-like</td>
<td>79/79</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>OXA-48</td>
<td>54/54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-181</td>
<td>8/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-232</td>
<td>7/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-162</td>
<td>7/7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>others</td>
<td>3/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXA-48-like/NDM</td>
<td>3/3</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 2. Sensitivity and specificity of the ICT from blood cultures

Conclusion
- OXA-48-like, KPC and NDM carbapenemases can be reliably detected directly from positive BC bottles with the new protocol
- More rapid than other currently available assays
- Can be performed in any routine microbiology laboratory
- Can help to rapidly identify patients with CPE BSI and early optimize treatment

Funding & acknowledgements
This study was supported by grants from the faculty of medicine, University Hospital Cologne. The ICT were supplied for evaluation free of charge by Coris BioConcept.

Contact Information
Axel Hamprecht, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Baldiehstrasse 19-21, D-50935 Cologne, Germany; Tel. (+49) 221-478 32160; e-mail: axel.hamprecht@uk-koeln.de